Asymptotic Properties of Suffix Trees

Analysis of height and feasible path length
Overview by
Ivan Kazmenko
Saint Petersburg State University, Russia
Original paper by
Wojciech Szpankowski
Purdue University, USA

Plan of the Talk

1. Suffix Trees: Construction
2. Depth of Insertion in a Suffix Tree
3. Height and Shortest Feasible Path in a Suffix Tree
4. Proof Techniques

Definitions

- Σ is a finite alphabet, $|\Sigma|=V$
- $\left\{X_{k}\right\}_{k=1}^{\infty}$ is a stationary ergodic sequence of symbols generated from Σ
- $X_{m}^{n}=\left(X_{m}, \ldots, X_{n}\right)$ for $m<n$ is a partial sequence

The Problem: Construction

Consider a digital tree built in the following way:
Step 0. At the beginning, the tree consists of its root only.
Step 1. Consider a tree \mathcal{T}_{n} built for the partial sequence $X_{1}^{n}=\left(X_{1}, \ldots, X_{n}\right)$.

Step 2. Set current vertex to root.
Step 3. Starting with $j=n+1$, we either
(A) move by the edge marked by X_{j} from the current vertex if it exists thus changing the current vertex and increase j by 1 , or
(B) construct a new edge marked with symbol X_{j} from the current vertex to a new vertex marked with our suffix X_{n+1}^{∞} and proceed to Step 1 with n increased by 1 otherwise

Example

Tree with 4 inserted suffixes.

Example

Fifth suffix insertion.

The Problem: Questions

- What is the typical height of \mathcal{T}_{n} ?
- What is the typical difference $j-n$ when Step 3 is finished?
- What is the typical minimal possible difference $j-n$ at the end of Step 3 for the tree \mathcal{T}_{n} ?

Note that $j-n$ is the number of case (A) occurences during a single Step 3 .

More Definitions

- Σ is a finite alphabet, $|\Sigma|=V$
- $\left\{X_{k}\right\}_{k=1}^{\infty}$ is a stationary ergodic sequence of symbols generated from Σ
- $X_{m}^{n}=\left(X_{m}, \ldots, X_{n}\right)$ for $m<n$ is a partial sequence
- $P\left(X_{1}^{n}\right)=\operatorname{Pr}\left\{X_{k}=x_{k}, 1 \leqslant k \leqslant n, x_{k} \in \Sigma\right\}$ is nth order probability distribution
- $h=\lim _{n \rightarrow \infty} \frac{E\left\{-\log P\left(X_{1}^{n}\right)\right\}}{n}$ is the entropy of $\left\{X_{k}\right\}$

It is known that $h \leqslant \log V$.

Parameter L_{n}

- L_{n} is the smallest integer $L>0$ such that $X_{m}^{m+L-1} \neq X_{n+1}^{n+L}$ for all $1 \leqslant m \leqslant n$.

Example:

Let $X_{1}^{10}=(0,1,0,1,1,0,1,1,1,0)$.
Here $L_{1}=1, L_{2}=3, L_{3}=2$, and $L_{4}=5$ since $X_{5}^{8}=X_{2}^{5}=(1,0,1,1)$ and therefore $L_{4}>4$:

$$
(0, \underbrace{1,0,1,1}, 0,1,1,1,0) \text {. }
$$

Mixing Condition

Let F_{m}^{n} be a σ-field generated by $\left\{X_{k}\right\}_{k=m}^{n}$ for $m \leqslant n$.
$\left\{X_{k}\right\}$ satisfies the mixing condition \Longleftrightarrow there exist constants
$0<c_{1} \leqslant c_{2}$ and an integer d such that for all $A \in F_{-\infty}^{m}, B \in F_{m+d}^{\infty}$ and $-\infty \leqslant m \leqslant m+d \leqslant n$ the following condition is true: $c_{1} \operatorname{Pr}\{A\} \operatorname{Pr}\{B\} \leqslant \operatorname{Pr}\{A B\} \leqslant c_{2} \operatorname{Pr}\{A\} \operatorname{Pr}\{B\}$.

Strong α-Mixing Condition

Let α be a function of d such that $\alpha(d) \underset{d \rightarrow \infty}{ } 0$.
$\left\{X_{k}\right\}$ satisfies the strong α-mixing condition \Longleftrightarrow for all $A \in F_{-\infty}^{m}, B \in F_{m+d}^{\infty}$ and $-\infty \leqslant m \leqslant m+d \leqslant n$ the following condition is true:

$$
(1-\alpha(d)) \operatorname{Pr}\{A\} \operatorname{Pr}\{B\} \leqslant \operatorname{Pr}\{A B\} \leqslant(1+\alpha(d)) \operatorname{Pr}\{A\} \operatorname{Pr}\{B\}
$$

Parameters h_{1} and h_{2}

$$
\begin{gathered}
h_{1}=\lim _{n \rightarrow \infty} \frac{\max \left\{\log P^{-1}\left(X_{1}^{n}\right), P\left(X_{1}^{n}\right)>0\right\}}{n}=\lim _{n \rightarrow \infty} \frac{\log \left(1 / \min \left\{P\left(X_{1}^{n}\right), P\left(X_{1}^{n}\right)>0\right\}\right)}{n} \\
h_{2}=\lim _{n \rightarrow \infty} \frac{\log \left(E\left\{P\left(X_{1}^{n}\right)\right\}\right)^{-1}}{2 n}=\lim _{n \rightarrow \infty} \frac{\log \left(\sum_{\left.X_{1}^{n} P^{2}\left(X_{1}^{n}\right)\right)^{-1}}^{2 n}\right.}{}
\end{gathered}
$$

The relationship with entropy h is as follows:

$$
0 \leqslant h_{2} \leqslant h \leqslant h_{1}
$$

Example: Bernoulli Model

Assume that symbols X_{i} are generated indepenently, and i th symbol is generated according to the probability p_{i}.
Thus, $h=\sum_{i=1}^{V} p_{i} \log \left(p_{i}^{-1}\right), h_{1}=\log \left(1 / p_{\min }\right)$ and $h_{2}=2 \log (1 / P)$
where $p_{\text {min }}=\min _{1 \leqslant i \leqslant V}\left\{p_{i}\right\}$ is the probability
of least probable symbol occurence
and $P=\sum_{i=1}^{V} p_{i}^{2}$ can be interpreted as a probability of a match between any two symbols.

Theorem 1

Consider stationary ergodic sequence $\left\{X_{k}\right\}_{k=-\infty}^{\infty}$.

- Assume strong α-mixing condition
- Let $h_{1}<\infty$ and $h_{2}>0$
- (*) $\exists \rho: 0<\rho<1, \exists \beta$ such that $\alpha(d)=O\left(d^{\beta} \rho^{d}\right)$ for $d \rightarrow \infty$

Then
(1) $\liminf _{n \rightarrow \infty} \frac{L_{n}}{\log n}=\frac{1}{h_{1}}$ (a.s.),
(2) $\limsup _{n \rightarrow \infty} \frac{L_{n}}{\log n}=\frac{1}{h_{2}}$ (a.s.).

Is the Condition (*) Restrictive?

- In Bernoulli model, $\alpha(d)=0$ because of independence of X_{k}.
- If the sequence $\left\{X_{k}\right\}$ is Markovian, $\alpha(d)$ decays exponentially fast
- In general, statement (1) of Theorem 1 does not hold without the $(*)$ condition

Depth in a Suffix Tree
 Let $\left\{X_{k}\right\}_{k=1}^{\infty}$ be a sequence of symbols from Σ.
 Let \mathcal{T}_{n} be a suffix tree constructed from the first n suffixes of $\left\{X_{k}\right\}$.

- m th depth $L_{n}(m)$ is the depth of the i th suffix in \mathcal{T}_{n}; note that $L_{n}=L_{n+1}(n+1)$
- Average depth D_{n} is the depth of a randomly selected suffix, that is, $D_{n}=\frac{1}{n} \sum_{m=1}^{n} L_{n}(m)$

Height and Shortest Feasible Path

- Height H_{n} is the length of the longest path in $\mathcal{T}_{n} ; H_{n}=\max _{1 \leqslant m \leqslant n}\left\{L_{n}(m)\right\}$.
- Available node is a node which does not belong to \mathcal{T}_{n} but its predecessor does, that is, a node that could be inserted in \mathcal{T}_{n+1} at the next insertion.
- Shortest feasible path s_{n} is the length of the shortest path from the root to an available node.

Self-alignment

Let the suffix tree \mathcal{T}_{n} be built from the suffixes S_{1}, \ldots, S_{n}. Self-alignment $C_{i, j}$ is the length of the longest common prefix of S_{i} and S_{j}.
Relation to other suffix tree parameters:

- $L_{n}(m)=\max _{1 \leqslant k \leqslant n, k \neq m}\left\{C_{k, m}\right\}+1$
- $H_{n}=\max _{1 \leqslant i<j \leqslant n}\left\{C_{i, j}\right\}+1$
- $L_{n}=\max _{1 \leqslant m \leqslant n}\left\{C_{m, n+1}\right\}+1$

Example

$$
\begin{aligned}
& S_{1}=0101101110 \\
& S_{2}=101101110 \\
& S_{3}=01101110 \\
& S_{4}=1101110
\end{aligned}
$$

$$
\text { Let } X_{1}^{10}=(0,1,0,1,1,0,1,1,1,0)
$$

Consider suffix tree \mathcal{T}_{4} built from first 4 suffixes.

$$
\begin{gathered}
L_{4}(1)=3, L_{4}(2)=2, L_{4}(3)=3, L_{4}(4)=2 \\
H_{4}=3, s_{4}=2
\end{gathered}
$$

$$
\text { But } L_{4}=L_{5}(5)=5
$$

Example

But $L_{4}=L_{5}(5)=5$.
$H_{5}=5$, and $s_{5}=2=s_{4}$.

Theorem 2

Consider stationary ergodic sequence $\left\{X_{k}\right\}_{k=1}^{\infty}$.

- Assume strong α-mixing condition
- Let $h_{1}<\infty$ and $h_{2}>0$

Then
(1) $\lim _{n \rightarrow \infty} \frac{s_{n}}{\log n}=\frac{1}{h_{1}}$ (a.s.) when ($*$) holds,
(2) $\lim _{n \rightarrow \infty} \frac{H_{n}}{\log n}=\frac{1}{h_{2}}$ (a.s.) when $\alpha(d)$ satisfies the following: $\sum_{d=0}^{\infty} \alpha^{2}(d)<\infty$.

Proof of Theorem 1 by Theorem 2

(1):

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{L_{n}}{\log n} \leqslant \lim _{n \rightarrow \infty} \frac{H_{n}}{\log n} \text { (a.s.): } \\
& \text { by definition: } L_{n} \leqslant H_{n} .
\end{aligned}
$$

Proof of Theorem 1 by Theorem 2

(1):

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{L_{n}}{\log n} \leqslant \lim _{n \rightarrow \infty} \frac{H_{n}}{\log n}(\text { a.s. }): \\
& \text { by definition: } L_{n} \leqslant H_{n} .
\end{aligned}
$$

$$
\limsup _{n \rightarrow \infty} \frac{L_{n}}{\log n} \geqslant \lim _{n \rightarrow \infty} \frac{H_{n}}{\log n} \text { (a.s.): }
$$

Note that H_{n} is a non-decreasing sequence;
$L_{n}=H_{n}$ a.s. when $H_{n+1}>H_{n}$, and that occurs infinitely often since
$H_{n} \rightarrow \infty$ and $\left\{X_{k}\right\}$ is an ergodic sequence, so

$$
\operatorname{Pr}\left\{L_{n}=H_{n} \quad \text { i.o. }\right\}=1
$$

and there exists a subsequence $n_{k} \rightarrow \infty$ such that $L_{n_{k}}=H_{n_{k}}$.

Proof of Theorem 1 by Theorem 2

(1):

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} \frac{L_{n}}{\log n} \leqslant \lim _{n \rightarrow \infty} \frac{H_{n}}{\log n} \text { (a.s.): } \\
\text { by definition: } L_{n} \leqslant H_{n} .
\end{gathered}
$$

$$
\limsup _{n \rightarrow \infty} \frac{L_{n}}{\log n} \geqslant \lim _{n \rightarrow \infty} \frac{H_{n}}{\log n} \text { (a.s.): }
$$

Note that H_{n} is a non-decreasing sequence;
$L_{n}=H_{n}$ a.s. when $H_{n+1}>H_{n}$, and that occurs infinitely often since
$H_{n} \rightarrow \infty$ and $\left\{X_{k}\right\}$ is an ergodic sequence, so

$$
\operatorname{Pr}\left\{L_{n}=H_{n} \text { i.o. }\right\}=1
$$

and there exists a subsequence $n_{k} \rightarrow \infty$ such that $L_{n_{k}}=H_{n_{k}}$.
(2) can be proved in a similar way:
s_{n} is a non-decreasing sequence also.

Techniques: String-Ruler Approach

- Summary: The correlation between different substrings is measured using another string ω called a string-ruler.
- Example:

How to find the longest common prefix of two independent strings $\left\{X_{k}(1)\right\}_{k=1}^{\infty}$ and $\left\{X_{k}(2)\right\}_{k=1}^{\infty}$?
Let its length be $C_{1,2}$.
$C_{1,2} \geqslant k \Longleftrightarrow \exists \omega$ of length $k: X_{1}^{k}(1)=\omega=X_{1}^{k}(2)$.
We then construct a set $\mathcal{W}_{k}=\left\{\omega \in \Sigma^{k}:|\omega|=k\right\}$ and estimate the probabilities $P\left(\omega_{k}\right)=P\left(X_{m+1}^{m+k}=\omega_{k}\right)$ for a fixed position m in our sequence $\left\{X_{k}\right\}$.

Techniques: Second Moment Method

- Summary: Second Moment Method by Chung and Erdös: For a sequence of events A_{i} we have

$$
\operatorname{Pr}\left\{\bigcup_{i=1}^{n} A_{i}\right\} \geqslant \frac{\left(\sum_{i=1}^{n} \operatorname{Pr}\left\{A_{i}\right\}\right)^{2}}{\sum_{i=1}^{n} \operatorname{Pr}\left\{A_{i}\right\}+\sum_{i \neq j} \operatorname{Pr}\left\{A_{i} \cap A_{j}\right\}} .
$$

- Application:

$$
\text { We then set } A_{i, j}=\left\{C_{i, j} \geqslant k\right\} \text {. }
$$

Techniques: Second Moment Method

- Reasoning:

Markov's Inequality:

$$
\operatorname{Pr}\{X \geqslant t\} \leqslant \frac{E\{X\}}{t}
$$

Chebyshev's Inequality:

$$
\operatorname{Pr}\{|X-E\{X\}| \geqslant t\} \leqslant \frac{\operatorname{Var}\{X\}}{t^{2}}
$$

- Trivial Results:

First Moment Method:
For integer-valued nonnegative random variable X $\operatorname{Pr}\{X>0\} \leqslant E\{X\}$.
Second Moment Method (Chebyshev):

$$
\operatorname{Pr}\{X=0\} \leqslant \frac{\operatorname{Var}\{X\}}{(E\{X\})^{2}}
$$

References

1. Wojciech Szpankowski, Asymptotic properties of data compression and suffix trees, IEEE Transactions on Information Theory 39 (1993), no. 5, pp. 1647-1659.
2. Wojciech Szpankowski, Average case analysis of algorithms on sequences; available online as http://www.cs.purdue.edu/homes/spa/book.html.
