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Definitions

e > is a finite alphabet,

>|=V

o {X}}72q is a stationary ergodic sequence of symbols generated from %

e X" = (Xm,...,Xn) for m < n is a partial sequence



The Problem: Construction

Consider a digital tree built in the following way:
Step 0. At the beginning, the tree consists of its root only.
Step 1. Consider a tree T, built for the partial sequence X7 = (Xq, ..., Xn).
Step 2. Set current vertex to root.
Step 3. Starting with y =n + 1, we either

(A) move by the edge marked by X; from the current vertex if it exists thus
changing the current vertex and increase 5 by 1, or

(B) construct a new edge marked with symbol X; from the current vertex
to a new vertex marked with our suffix X;;O_'_l and proceed to Step 1
with n increased by 1 otherwise



Example

Tree with 4 inserted suffixes.

Let X{%=(0,1,0,1,1,0,1,1,1,0).
S1 = 0101101110
S5 =101101110
S3 = 01101110
S, =1101110




Example

Fifth suffix insertion.
Let X{%=(0,1,0,1,1,0,1,1,1,0).
S1 = 0101101110
S> =101101110
S3 = 01101110
S, =1101110
Ss = 101110




The Problem: Questions

e What is the typical height of 7,7
e What is the typical difference 3y — n when Step 3 is finished?

e \What is the typical minimal possible difference 3 — n at the
end of Step 3 for the tree 7,7

Note that j — n is the number of case (A) occurences during

a single Step 3.



More Definitions

2> is a finite alphabet,

>|=V

{Xk}r2q is a stationary ergodic sequence of symbols generated from >
X = (Xm,...,Xn) for m < n is a partial sequence

P(XT) = Pr{X; = x,1 <k <n,zp € X} is nth order probability distribu-
tion

. B{—logP(X])} .
h = lim_ - is the entropy of {X}}

It is known that Ah <logV.



Parameter L,

e [, is the smallest integer L > 0 such that
xmtLi—1 = X,Z_"I_'f for all 1 < m < n.

Example:

Let X{9=(0,1,0,1,1,0,1,1,1,0).

Here L1 =1, Lo =3, L3 =2, and L, = 5 since

X8 = X3=1(1,0,1,1) and therefore Ly > 4:
(0,1,0,1,1,0,1,1,1,0).




Mixing Condition
Let F}, be a o-field generated by {X;}7_. for m < n.

{X}} satisfies the mixing condition <= there exist constants
0 < cq1 <cp and an integer d such that for all
Ae F™_, BEFﬁf_i_d and —co<m<m+d<n
the following condition is true:

c1Pr{A}Pr{B} < Pr{AB} < coPr{A}Pr{B}.



Strong a-Mixing Condition

Let o be a function of d such that a(d) —— 0.
d— 00

{X}} satisfies the strong a-mixing condition <= for all
Ae F™_, BEFﬁf_I_d and —co<m<m+d<n
the following condition is true:

(1 —al(d))Pr{A}Pr{B} < Pr{AB} < (1 + «a(d))Pr{A}Pr{B}.



Parameters hqy and ho

hi = lim max{log P~1(X?), P(X})>0} — Iim log(1/ min{P(X}), P(X})>0})

n—oo n n—o00 n

2 ny\—1
ho = lim [9ELPCHHT L 090xg PPOED)

N—00 2n T n—oo 2n

The relationship with entropy h is as follows:
O< ho <h<hj.



Example: Bernoulli Model

Assume that symbols X; are generated indepenently,
and :th symbol is generated according to the probability p;.

1%
Thus, h = ,leilog(pi‘l), h1 =109(1/pmin) and ho = 210g9(1/P)
1=
where . = min -1 is the probabilit
Pmin 1<1<V{p7’} P y
of least probable symbol occurence

1%
and P= ) pi2 can be interpreted as a probability of a match
i=1
between any two symbols.



Theorem 1

Consider stationary ergodic sequence {Xj}72

=—0o0°

e Assume strong a-mixing condition
e Let hi < oo and h, >0

e (x) dp:0< p< 1,38 such that a(d) = O(dPp?) for d — oo
Then
(1) I|m|nf

_ 1
Iog i (a.s.) ,

. L, — 1
(2) I|?2n_§olép ogn = Ts (a.s.) .



Is the Condition (%) Restrictive?

e In Bernoulli model, a(d) = 0 because of independence of X;.
e If the sequence {X} is Markovian, a(d) decays exponentially fast

e In general, statement (1) of Theorem 1 does not hold
without the (k) condition



Depth in a Suffix Tree

Let { X }72, be a sequence of symbols from 3.
Let 7, be a suffix tree constructed from the first n suffixes of {X}}.

e mth depth L, (m) is the depth of the i¢th suffix in Ty;
note that L, = L,,41(n+ 1)

e Average depth D, is the depth of a randomly selected suffix,

n
that is, Dp =1 S Lp(m)
m=1

n



Height and Shortest Feasible Path

e Height H,, is the length of the longest path in 7,; H, = max {L,(m)}.

1<m<n

e Available node is a node which does not belong to 7, but its predecessor
does, that is, a node that could be inserted in 7,41 at the next insertion.

e Shortest feasible path s, is the length of the shortest path from the root
to an available node.



Self-alignment

Let the suffix tree 7, be built from the suffixes S, ..., Sn.
Self-alignment Cj ; is the length of the longest common prefix
of 5; and §;.

Relation to other suffix tree parameters:

L — 1
e L,(m) . <k2§‘,>z§ #m{ck,m}'F

H,= m - 1
* n 1<i<an<n{CZ’]}+

o Lpn= _max {Cp, ny1}+1

1<m<n



Example

S; = 0101101110
S> = 101101110
S; = 01101110
S, = 1101110

Let X{%=(0,1,0,1,1,0,1,1,1,0).
Consider suffix tree T4 built from first 4 suffixes.
La(1) =3, La(2) =2, L4(3) =3, La(4) = 2.
Hyp = 3, s4 = 2.

But L, = Ls(5) = 5.



Example

S1 =0101101110
S» =101101110
Ss=01101110
S, = 1101110

Se = 101110

But L, = L5(5) = b.
H5:5, and 85:2:84.



T heorem 2

Consider stationary ergodic sequence {X}72 ;.
e Assume strong a-mixing condition

e Let hy < oo and ho >0
Then

(1) im |%n = ? (a.s.) when (>k) holds,

(2) nh_)moo ogn = 75 (a.s.) when a(d) satisfies the following:
©. @)

> a?(d) < oo.

d=0



Proof of Theorem 1 by Theorem 2
(1):

H Ln < H Hn .
I|?r;1_>sotép g S nl|_>moo og 5 (a.s.):

by definition: L, < Hp.




Proof of Theorem 1 by Theorem 2
(1):

H Ln < H Hn .
I|?r;1_>sotép g S nl|_>moo og 5 (a.s.):

by definition: L, < Hp.

Iiglsolép kfg”n > nli_)moo k{é"n (a.s.):
Note that H,, is a non-decreasing sequence;
n = Hp a.s. when H,_1 > Hp, and that occurs infinitely often since
Hp, — oo and {X;} is an ergodic sequence, so
Pr{L, = Hy, 1.0.} =1
and there exists a subsequence ny — oo such that Ly, = Hp,.



Proof of Theorem 1 by Theorem 2
(1):

H Ln < H Hn .
I|?r;1_>sotép g S nl|_>moo og 5 (a.s.):

by definition: L, < Hp.

Iiglsolép kfg”n > nli_)moo k{é"n (a.s.):
Note that H,, is a non-decreasing sequence;
n = Hp a.s. when H, 1 > Hp, and that occurs infinitely often since
Hp, — oo and {X;} is an ergodic sequence, so
Pr{L, = H, 1.0.} =1
and there exists a subsequence ny — oo such that Ly, = Hp,.

(2) can be proved in a similar way:
sn 1S @ Nnon-decreasing sequence also.



Techniques: String-Ruler Approach

e Summary: The correlation between different substrings is measured
using another string w called a string-ruler.

e Example:
How to find the longest common prefix of two independent strings

{Xe(1)}pZ, and {Xp(2)}p2,7

Let its length be C1 5.

C1 > k<= 3w of length k: X§(1) = w = X¥(2).

We then construct a set W, = {w € ¥ : |w| = k} and estimate
the probabilities P(wg) = P(X;',Zj_'f = wy,) for a fixed position m
in our sequence {X}.



Techniques: Second Moment Method

e Summary: Second Moment Method by Chung and Erdos:
For a sequence of events A; we have

i (% Priai?
Pr{U A} > m—= '
i=1 .21 P'r{A@'}—F.;'P"“{AimAj}
1= 17

e Application:
We then set A; ; = {C;; > k}.



Techniques: Second Moment Method

e Reasoning:
Markov's Inequality:
Pr{x >t} < 21X
Chebyshev’s Inequality:
Var{X}
Pr{|X — B{X}| >t} < 4%

e Trivial Results:
First Moment Method:
For integer-valued nonnegative random variable X
Pr{X >0} < E{X}.
Second Moment Method (Chebyshev):

_ Var{X}
Pr{X =0} < (E(X1)2
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